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Abstract
Time-series classification is seeing growing importance as device
proliferation has lead to the collection of an abundance of sensor
data. Although black-box models, whose internal workings are
difficult to understand, are a common choice for this task, their use
in safety-critical domains has raised calls for greater transparency.
In response, researchers have begun employing explainable artificial
intelligence together with physio-behavioural signals in the context
of real-world problems. Hence, this paper examines the current
literature in this area and contributes principles for future research
to overcome the limitations of the reviewed works.

CCS Concepts
• Mathematics of computing → Time series analysis; • Com-
puting methodologies → Knowledge representation and rea-
soning; Supervised learning by classification; • Human-centered
computing→Ubiquitous andmobile computing; Visualization
design and evaluation methods.
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1 Introduction
Since Mark Weiser’s seminal article on ubiquitous computing “The
computer for the 21st century” [31], embedded computers have
found their way into all kinds of everyday devices within human
environments and enabled the collection of an enormous amount
of time-series data [25]. There has thus been considerable interest
in applying Machine Learning (ML) to automatically classify this
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data, which is known in the literature as Time-Series Classification
(TSC) [8]. Deep-learning models in particular have achieved high
performance on various tasks, yet are often considered as “black
boxes” [17]. Consequently, eXplainable Artificial Intelligence (XAI)
has gained traction as a means to shed light on these models [15].

Although there are existing surveys discussing eXplainable TSC
(XTSC) [27, 29], those focusing specifically on applications using
physiological and behavioural (physio-behavioural) signals are
scarce. Therefore, this paper aims to fill this gap and is structured as
follows: Section 2 provides a brief overview of model explanations
and how these can be evaluated; Section 3 presents the results of
the literature review; Section 4 constitutes the main contribution
of this paper in the form of a set of principles for future research to
address the limitations in the reviewed works.

2 Explainable Artificial Intelligence
As Artificial Intelligence (AI) is deployed in domains with stringent
safety requirements such as health care, it is increasingly important
to be able to explain models to justify decisions, prevent misin-
terpretations, identify shortcomings and increase knowledge [4].
Nauta et al. [22] treat explanations as “a presentation of (aspects
of) the reasoning, functioning and/or behavior of a ML model in
human-understandable terms.” These can be in the form of visu-
alizations, textual descriptions, simplified models, data examples
or relevance scores and serve different purposes depending on the
audience [3], who can be split into novice users, data experts and
AI experts [21]. Ideally, an explainable system would present its
explanations appropriately to address the needs of the intended
target group.

Due to the many factors that influence the effectiveness of expla-
nations, it is necessary to evaluate the chosen methods to ensure
that these align with the expectations of the target users. This can
be achieved using human-centred methods, such as quantitative
and qualitative surveys, or objective metrics [30]. The importance of
the latter is in comparing and benchmarking different methods and
as optimization criteria during model training [22]. Consequently,
several approaches for evaluating XAI methods for TSC have been
developed. For instance, Fouladgar et al. [10] formulate multiple
sensitivity-based metrics specifically tailored for time-series data
and Fauvel et al. [9] propose a framework to systematically assess
the performance and explainability of MLmodels and benchmarked
several multivariate time-series classifiers. Readers are referred to
Nauta et al. [22] for a comparison of evaluation methods.
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3 Literature Review
Explainability is crucial inmany practical applications of TSCwhere
sensitive personal data collected fromwearable and ambient sensors
is used to make important decisions pertaining to those individuals.
This section reviews and summarizes the recent literature regarding
applications of XTSC using physio-behavioural signals.

As shown in Table 1, many of the papers reviewed focused on
disease diagnosis, such as detecting arrhythmia, strokes, seizures
and psychotic disorders. Other applications included sleep diagno-
sis, human activity recognition and affect and emotion recognition.
The majority of papers dealt with only a single modality, the most
common of which was electroencephalogram (EEG), but electro-
cardiogram (ECG), electrodermal activity (EDA) and accelerometer
(ACC) sensor data also appeared several times.

The majority of papers utilized Convolutional Neural Network
(CNN) architectures, followed by those based on Tree Ensemble (TE)
methods. Recurrent Neural Network (RNN) and the related Echo
State Network (ESN) and Residual Network (ResNet) architectures
saw surprisingly little use despite their inherent suitability for
sequential data. SHapley Additive exPlanations (SHAP) were the
most popular explainabilitymethod, followed by Local Interpretable
Model-agnostic Explanations (LIME) and Gradient-weighted Class
Activation Mapping (Grad-CAM).

3.1 Disease Diagnosis
The aim of disease diagnosis is to identify abnormal patterns in
sensor data that are indicative of particular diseases and conditions.
For instance, Cesarelli et al. [6] propose an explainable CNN ar-
chitecture for discriminating regular and irregular heartbeats from
spectral centroid images extracted from phonocardiograms (PCG)
and visualize which sections of these images contribute to the clas-
sification using Grad-CAM. Alamatsaz et al. [2] look at the same
problem, but combine CNN with Long Short-Term Memory (LSTM)
and use SHAP instead of Grad-CAM. Similarly, Islam et al. [13]
and Bouazizi and Ltifi [5] both investigate detecting stroke from
EEG signals. The former paper explains predictions from various
TE models with LIME and Eli5, including Adaptive Gradient Boost-
ing (AdaBoost), Extreme Gradient Boosting (XGBoost) and Light
Gradient-Boosting Machine (LightGBM), whilst the latter paper
uses Ensemble ESN (E-ESN) and SHAP.

Al-Hussaini and Mitchell [1] suggest a TE architecture with Cat-
egorical Boosting (CatBoost) for detecting seizures trained on an
EEG data set augmented with Fourier-transform surrogates, claim-
ing that the glass-box model has performance similar to black-box
models. They use SHAP values to visualize the contributions of
each value to the predictions. In comparison, Halimeh et al. [12] use
ACC, EDA and Heart Rate (HR) signals and feed each of these di-
rectly into residual blocks to perform automatic feature extraction.
The authors use Uniform Manifold Approximation and Projection
(UMAP) to visualize discriminatory power at the individual level
and SHAP to determine which features are most informative during
seizure events. Finally, Misgar and Bhatia [20] present a dual-branch
CNN architecture with a Multi-Headed Attention (MHA) mecha-
nism using Grad-CAM for explaining depression and schizophrenia

detection frommotor activity data, where one branch processes day-
time activity and the other nighttime activity to deal with different
data distributions during these time periods.

3.2 Sleep Diagnosis
In the category of sleep diagnosis, Dutt et al. [7] combine 1-D CNN
with Conditional Random Fields (CRF) to identify stages of the sleep
cycle from EEG signals extracted from a polysomnogram and use
Grad-CAM to identify which time intervals correspond to different
stages. The paper by Jany et al. [14] is similar, but the authors use
TE models, including Random Forest (RF), Gradient Boosting (GB)
and XGBoost, along with SHAP instead of Grad-CAM. In contrast,
Rossi et al. [26] provide a CNN architecture to discriminate three
breathing-related patterns (normal, apnoea and irregular) during
sleep from somnographic signals, including Breathing Rhythm (BR),
Chest Effort (CE), Body Position (BP), Mechanical Vibration (MV)
and peripheral oxygen saturation (SpO2). For each prediction, the
authors calculate a Confidence Interval (CI) and heat maps for
visualization of time intervals pertinent to the classification.

3.3 Human Activity Recognition
The objective of human activity recognition is to determine which
actions human agents are performing in real time from sensor read-
ings. To this end, Yuan et al. [32] design an explainable multimodal
sensor-fusion system comprised of three RNN models with LSTM
units trained on Passive InfraRed (PIR), Passive Radio Frequency
(PRF) and mixed data sets. They use a transparent model, Support
Vector Machine (SVM) with a linear kernel, for decision-level fusion
and produce SHAP plots to show the relative weights of each RNN
prediction to the final decision. Mekruksavanich et al. [19] similarly
propose a multichannel CNN architecture with LSTM layers, where
convolution is performed separately over each input variable and
the intermediate features are concatenated before being classified in
a fully connected layer. The authors employ t-distributed Stochastic
Neighbour Embedding (t-SNE) to visualize the features extracted
by the model.

3.4 Affect and Emotion Recognition
Affect and emotion recognition represents a significant research
area whose goal is to automatically identify various human psy-
chological states with technology. Pan and Rahman [23] take an
interesting approach to recognize stress by training an Artificial
Neural Network (ANN) on EEG data, using a Genetic Algorithm
(GA) for feature selection, and then extracting rules for explain-
ing the model behaviour through sensitivity analysis. In a similar
vein, Tervonen et al. [28] focus on discriminating between physical
and psycho-social stress from ECG, EDA, electrooculogram (EOG)
and Brain Beat (BB) signals using a variety of classifiers: k-Nearest
Neighbours (k-NN), Linear and Quadratic Discriminant Analysis
(LDA, QDA), SVM, Decision Tree (DT), RF and XGBoost. They use
SHAP values to discover the most influential features for classifi-
cation. Lastly, Lin et al. [18] propose a Multimodal-Multisensory
Sequential Fusion (MMSF) model to distinguish between neutral,
stress and amusement states from ACC, EDA, ECG, electromyog-
raphy (EMG), Blood Volume Pulse (BVP), respiration (RESP) and
temperature (TEMP) signals. They perform late fusion using Linear
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Table 1: XTSC Applications Using Physio-Behavioural Signals

Reference Domain Modalities Architecture Explanation

Cesarelli et al. [6] Arrhythmia PCG CNN Grad-CAM
Alamatsaz et al. [2] Arrhythmia ECG CNN+LSTM SHAP
Islam et al. [13] Stroke EEG AdaBoost, LightGBM, XGBoost Eli5, LIME
Bouazizi and Ltifi [5] Stroke EEG E-ESN SHAP, LIME
Al-Hussaini and Mitchell [1] Seizure EEG CatBoost SHAP
Halimeh et al. [12] Seizure EDA, ACC, HR ResNet SHAP, UMAP
Misgar and Bhatia [20] Psychosis ACC CNN+MHA Grad-CAM
Dutt et al. [7] Sleep Stage EEG CNN+CRF Grad-CAM
Jany et al. [14] Sleep Stage EEG XGBoost, GB, RF SHAP
Rossi et al. [26] Sleep Event BR, CE, BP, MV, SpO2 CNN CI, Heat Map
Yuan et al. [32] Human Activity PIR, PRF RNN+LSTM+SVM SHAP
Mekruksavanich et al. [19] Human Activity ACC MC-CNN-LSTM t-SNE
Pan and Rahman [23] Stress EEG ANN+GA Rules
Tervonen et al. [28] Stress ECG, EDA, EOG, BB k-NN, LDA, QDA, DT, SVM, RF, XGBoost SHAP
Lin et al. [18] Affect ACC, ECG, EMG, EDA, BVP, TEMP, RESP MMSF (LR, SVM, RF) FI, Ablation

Regression (LR), SVM and RF classifiers on the outputs of several
submodels, providing explanations for the fusion and individual
predictions through Feature Importance (FI) scores and an ablation
experiment, respectively.

4 Discussion
In this section, the deficiencies of the current literature are discussed
and used to derive a set of principles to guide researchers interested
in XTSC and physio-behavioural signals.

4.1 Deficiencies
4.1.1 Lack of clarity. Inmany of the papers reviewed, explainability
was presented almost as an end in itself or an afterthought without
a specific context or audience in mind. The problem with this is that
the requirements for model explanations strongly depend on the
audience’s particular interests and level of AI proficiency [3]. For
example, Lin et al. [18] raise the inability of humans to understand
model predictions as a hindrance to the adoption of deep learning
models in affect recognition and attempt to overcome this limitation
through an explainability analysis. They conclude that EDA from
chest signals contribute most to model predictions, but do not
elaborate on the concrete uses or explanatory value of their results
for practitioners. In contrast, Alamatsaz et al. [2] discuss the use
of Shapley values for clinicians during the differential diagnosis
process and to ensure that the model concentrates on features that
are consistent with clinical expertise. Researchers should, thus, take
care to clarify how and by whom model explanations are intended
to be used.

4.1.2 Lack of relevance. Following from the previous point, it was
noted during the review that XAI models were often developed in
isolation from those who have an interest in or would be affected
by its use. In one of the papers, Bouazizi and Ltifi [5] present a
decision support system software to support clinicians with stroke
diagnosis, including a panel for visualizing explanations using LIME
plots and SHAP values and recommendations for diagnostic tests.
It is not clear, however, whether clinicians were consulted in the
design process of the software’s user interface. Similarly, in the
paper by Yuan et al. [32], although the dependence of explanations
on the needs of the users is acknowledged, no attempt to elicit

explainability requirements from the users was made. The benefit
of involving relevant stakeholders in the design of the system is
that it provides an opportunity to obtain feedback that can be used
to tailor the explanations and their presentation to the expectations
of the recipients [16].

4.1.3 Lack of interpretability. Another issue present in the re-
viewed works that limits the utility of model explanations is the
insufficient consideration given to domain-specific nuances of the
time-series data. Notably, many real-world time series have tem-
poral patterns that are often non-obvious, hidden or contaminated
by noise, making interpreting the raw data directly difficult [24].
This is exemplified in Fig. 7–9 of the paper by Misgar and Bhatia
[20], where heat maps highlight the regions of the feature maps
learnt by the model that contribute most to its prediction. However,
these visualizations do little to identify the reasoning behind the
prediction in the absence of easily recognizable and well understood
patterns in the feature maps. Researchers should consider providing
explanations in terms of handcrafted features extracted during the
data processing stage where appropriate, as argued by Geurts [11].
Islam et al. [13] and Jany et al. [14] make use of this approach by
splitting the input EEG into frequency subbands corresponding to
different types of brain waves. This makes it easier to see the link
between the provided explanations and existing knowledge about
the brain waves associated with each class.

4.1.4 Lack of validity. Of particular concern were missing evalua-
tion procedures to validate the effectiveness of model explanations
in real-world scenarios. Similar to the standard practice of evaluat-
ing model performance using metrics such as F1 score, accuracy,
precision and recall, explanations should also be subject to the same
rigour [22]. However, many authors appeared to rely primarily on
intuition based on a few arbitrary examples to determine the ac-
ceptability of the explanations, which was also raised as an issue
by Nauta et al. [22]. For example, in the paper by Cesarelli et al.
[6], the authors only mention that the heat maps generated using
Grad-CAM seem to coincide with peaks in the spectral centroid
without further elaboration. Some authors relate the explanations
to existing theory to show that these are sensible, but do not attempt
an empirical validation. This is the case in the paper by Alamatsaz
et al. [2], where the authors compare the explanations to clinically
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Table 2: Evaluation of Literature through DEEP Principles

Reference Define Engage Embed Prove

Cesarelli et al. [6] N N Y N
Alamatsaz et al. [2] Y N N N
Islam et al. [13] N N Y N
Bouazizi and Ltifi [5] Y N Y N
Al-Hussaini and Mitchell [1] Y N Y N
Halimeh et al. [12] Y N N N
Misgar and Bhatia [20] N N N N
Dutt et al. [7] Y N N N
Jany et al. [14] N N Y N
Rossi et al. [26] N N Y N
Yuan et al. [32] Y N N N
Mekruksavanich et al. [19] N N N N
Pan and Rahman [23] N N Y N
Tervonen et al. [28] Y N Y N
Lin et al. [18] N N N N

relevant EEG characteristics for various types of abnormal heart
rhythms. As mentioned in Section 2, researchers can take advantage
of existing human-centred and objective evaluation metrics for ex-
plainability methods to demonstrate that their proposed explainable
models will perform as intended.

4.2 Principles
In Figure 1, a list of four principles are presented to help future
researchers avoid the common pitfalls noted in the prior discussion:
Define, Engage, Embed, Prove. Using these principles, the reviewed
works were evaluated to obtain Table 2, where an item was deter-
mined to have been satisfied (Y) if the authors made an effort to
address the related issue or not satisfied (N) otherwise.

DEFINE purpose and target audiences of explanations at the start of the study.
ENGAGE stakeholders throughout system design to obtain regular feedback.
EMBED domain knowledge when selecting appropriate input features.
PROVE validity of explanations using theoretical and empirical evaluation.

Figure 1: DEEP (Define, Engage, Embed, Prove) Principles

As can be seen in Table 2, whilst almost half of the papers stated
the purpose and audience of their system’s explanations, the remain-
der did not address this point at all. None of the papers involved
stakeholders in the system design process except occasionally dur-
ing data collection. The papers were approximately evenly split
between those that presented explanations in terms of intuitive
features and those that did not. Although some papers attempted
to show that explanations aligned with theory, none performed a
thorough empirical evaluation.

5 Conclusion
In this paper, a brief overview of explainability and evaluation meth-
ods were given and the current literature on applications of XTSC
using physio-behavioural signals were reviewed. The deficiencies
of the reviewed works were discussed and a set of principles were
presented to combat these. In particular, it was shown that there
was an absence of stakeholder participation in the research and
empirical evaluation of explanations. Future efforts should aim to
follow these principles to address these limitations.
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